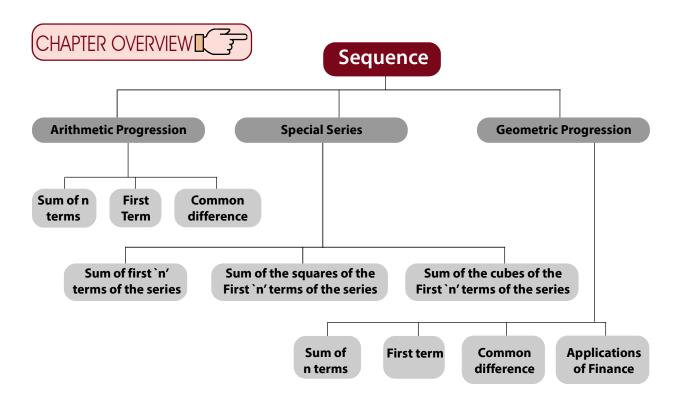
CHAPTER

SEQUENCE AND SERIES-ARITHMETIC AND GEOMETRIC PROGRESSIONS


LEARNING OBJECTIVES

Often students will come across a sequence of numbers which are having a common difference, i.e., difference between the two consecutive pairs are the same. Also another very common sequence of numbers which are having common ratio, i.e., ratio of two consecutive pairs are the same. Could you guess what these special type of sequences are termed in mathematics?

Read this chapter to understand that these two special type of sequences are called Arithmetic Progression and Geometric Progression respectively. Further learn how to find out an element of these special sequences and how to find sum of these sequences.

These sequences will be useful for understanding various formulae of accounting and finance.

The topics of sequence, series, A.P. G.P. find useful applications in commercial problems among others; viz., to find interest earned through compound interest, depreciations after certain amount of time and total sum earned on recurring deposits, etc.

6.1 SEQUENCE

Let us consider the following collection of numbers-

- (1) 28, 2, 25, 27, —
- (2) 2,7,11,19,31,51,
- (3) 1, 2, 3, 4, 5, 6, _____
- (4) 20, 18, 16, 14, 12, 10, _____

In (1) the nos. are not arranged in a particular order. In (2) the nos. are in ascending order but they do not obey any rule or law. It is, therefore, not possible to indicate the number next to 51.

In (3) we find that by adding 1 to any number, we get the next one. Here the number next to 6 is 6 + 1 = 7.

In (4) if we subtract 2 from any number we get the nos. that follows. Here the number next to 10 is 10 - 2 = 8.

Under these circumstances, we say, the numbers in the collections (1) and (2) do not form sequences whereas the numbers in the collections (3) & (4) form sequences.

Thus a sequence may be defined as follows:-

An ordered collection of numbers a_1, a_2, a_3, a_4 ,, a_n, a_n , is a sequence if according to some definite rule or law, there is a definite value of a_n , called the term or element of the sequence, corresponding to any value of the natural number n.

Clearly, a_1 is the 1st term of the sequence , a_2 is the 2nd term,, a_n is the nth term.

In the nth term a_n , by putting n = 1, 2, 3,..... successively, we get a_1, a_2, a_3, a_4 ,....

Thus it is clear that the nth term of a sequence is a function of the positive integer n. The nth term is also called the general term of the sequence. To specify a sequence, nth term must be known, otherwise it may lead to confusion. A sequence may be finite or infinite.

If the number of elements in a sequence is finite, the sequence is called *finite sequence*; while if the number of elements is unending, the sequence is *infinite*.

A finite sequence $a_1, a_2, a_3, a_4, \dots, a_n$ is denoted by $\{a_i\}_{i=1}^n$ and an infinite sequence $a_1, a_2, a_3, a_4, \dots, a_n$

 $a_{3'}$, $a_{4'}$, ..., a_{n} , ..., is denoted by $\{a_n\}_{n=1}^{\infty}$ or simply by $\{a_n\}$ where a_n is the nth element of the sequence.

Example :

- 1) The sequence $\{1/n\}$ is 1, 1/2, 1/3, 1/4...
- 2) The sequence { $(-1)^n n$ } is $-1, 2, -3, 4, -5, \dots$
- 3) The sequence { n } is 1, 2, 3,...
- 4) The sequence { n / (n + 1) } is 1/2, 2/3, 3/4, 4/5
- 5) A sequence of even positive integers is 2, 4, 6,
- 6) A sequence of odd positive integers is 1, 3, 5, 7,

All the above are infinite sequences.

Example:

- 1) A sequence of even positive integers within 12 i.e., is 2, 4, 6, 8, 10.
- 2) A sequence of odd positive integers within 11 i.e., is 1, 3, 5, 7, 9.

All the above are finite sequences.

6.2 SERIES

An expression of the form $a_1 + a_2 + a_3 + \dots + a_n + \dots$ which is the sum of the elements of the sequence $\{a_n\}$ is called a *series*. If the series contains a finite number of elements, it is called a *finite series*, otherwise called *an infinite series*.

If $S_n = u_1 + u_2 + u_3 + u_4 + \dots + u_{n'}$ then S_n is called the sum to n terms (or the sum of the first n terms) of the series and the term sum is denoted by the Greek letter Σ .

Thus, $S_n = \sum_{r=1}^n u_r$ or simply by $\sum u_n$.

(?) ILLUSTRATIONS:

- (i) $1 + 3 + 5 + 7 + \dots$ is a series in which 1st term = 1, 2nd term = 3, and so on.
- (ii) $2-4+8-16+\ldots$ is also a series in which 1st term = 2, 2nd term = -4, and so on.

6.3 ARITHMETIC PROGRESSION (A.P.)

A sequence $a_1, a_2, a_3, \ldots, a_n$ is called an Arithmetic Progression (A.P.) when $a_2 - a_1 = a_3 - a_2 = \ldots$ = $a_n - a_{n-1}$. That means A. P. is a sequence in which each term is obtained by adding a constant d to the preceding term. This constant 'd' is called the *common difference* of the A.P. If 3 numbers a, b, c are in A.P., we say

b - a = c - b or a + c = 2b; b is called the arithmetic mean between a and c.

Example: 1) $2,5,8,11,14,17,\ldots$ is an A.P. in which d = 3 is the common difference.

2) 15,13,11,9,7,5,3,1,-1, is an A.P. in which -2 is the common difference.

Solution: In (1) 2nd term = 5, 1st term = 2, 3rd term = 8,

so 2nd term – 1st term = 5 - 2 = 3, 3rd term – 2nd term = 8 - 5 = 3

Here the difference between a term and the preceding term is same that is always constant. This constant is called common difference.

Now in generel an A.P. series can be written as

a, a + d, a + 2d, a + 3d, a + 4d,

where 'a' is the 1^{st} term and 'd' is the common difference.

Thus 1^{st} term $(t_1) = a = a + (1 - 1) d$

 2^{nd} term (t₂) = a + d = a + (2 - 1) d 3^{rd} term (t₂) = a + 2d = a + (3 - 1) d

$$4^{\text{th}}$$
 term $(t_{4}) = a + 3d = a + (4 - 1) d$

.....

 n^{th} term $(t_n) = a + (n - 1) d$, where n is the position number of the term.

Using this formula we can get

 50^{th} term (= t_{50}) = a+ (50 – 1) d = a + 49d

Example 1: Find the 7th term of the A.P. 8, 5, 2, -1, -4,....

Solution: Here
$$a = 8, d = 5 - 8 = -3$$

Now $t_7 = 8 + (7 - 1) d$
 $= 8 + (7 - 1) (-3)$
 $= 8 - 18$
 $= -10$

Example 2: Which term of the AP $\frac{3}{\sqrt{7}}$, $\frac{4}{\sqrt{7}}$, $\frac{5}{\sqrt{7}}$is $\frac{17}{\sqrt{7}}$?

Solution:
$$a = \frac{3}{\sqrt{7}}, d = \frac{4}{\sqrt{7}} - \frac{3}{\sqrt{7}} = \frac{1}{\sqrt{7}}, t_n = \frac{17}{\sqrt{7}}$$

We may write

$$\frac{17}{\sqrt{7}} \!=\! \frac{3}{\sqrt{7}} \!+\! (n \!-\! 1) \times \frac{1}{\sqrt{7}}$$

or,
$$17 = 3 + (n - 1)$$

or, n = 17 - 2 = 15

Hence, 15th term of the A.P. is $\frac{17}{\sqrt{7}}$.

Example 3: If 5th and 12th terms of an A.P. are 14 and 35 respectively, find the A.P. **Solution:** Let a be the first term & d be the common difference of A.P.

 $t_5 = a + 4d = 14$ $t_{12} = a + 11d = 35$

On solving the above two equations,

$$7d = 21 = i.e., d = 3$$

and $a = 14 - (4 \times 3) = 14 - 12 =$

2

Hence, the required A.P. is 2, 5, 8, 11, 14,....

Example 4: Divide 69 into three parts which are in A.P. and are such that the product of the first two parts is 483.

Solution: Given that the three parts are in A.P., let the three parts which are in A.P. be a - d, a, a + d......

Thus a - d + a + a + d = 69

or 3a = 69

or a = 23

So the three parts are 23 - d, 23, 23 + d

Since the product of first two parts is 483, therefore, we have

```
23 ( 23 – d ) = 483
```

```
or 23 - d = 483 / 23 = 21
```

or d = 23 - 21 = 2

Hence, the three parts which are in A.P. are

23 - 2 = 21, 23, 23 + 2 = 25

Hence the three parts are 21, 23, 25.

Example 5: Find the arithmetic mean between 4 and 10.

Solution: We know that the A.M. of a & b is = (a + b)/2

Hence, The A. M between 4 & 10 = (4 + 10) / 2 = 7

Example 6: Insert 4 arithmetic means between 4 and 324.

4, -, -, -, 324

Solution: Here a= 4, d = ? n = 2 + 4 = 6, t_n = 324

Now $t_n = a + (n - 1) d$ or 324=4+(6-1) dor 320=5d i.e., = i.e., d = 320 / 5 = 64So the $1^{st} AM = 4 + 64 = 68$ $2^{nd} AM = 68 + 64 = 132$ $3^{rd} AM = 132 + 64 = 196$ $4^{th} AM = 196 + 64 = 260$

Sum of the first n terms

Let S be the Sum, a be the 1st term and ℓ the last term of an A.P. If the number of term is n, then $t_n = \ell$. Let d be the common difference of the A.P.

Now $S = a + (a + d) + (a + 2d) + ... + (\ell - 2d) + (\ell - d) + \ell$ Again $S = \ell + (\ell - d) + (\ell - 2d) + + (a + 2d) + (a + d) + a$ On adding the above, we have

$$2S = (a + l) + (a + l) + (a + l) + \dots + (a + l)$$

= n(a + l)
or
$$S = n(a + l) / 2$$

Note: The above formula may be used to determine the sum of n terms of an A.P. when the first term a and the last term is given.

Now
$$\ell = t_n = a + (n-1) d$$

$$\therefore S = \frac{n\{a+a+(n-1)d\}}{2}$$

$$S = \frac{n}{2}\{2a+(n-1)d\}$$

or

Note: The above formula may be used when the first term a, common difference d and the number of terms of an A.P. are given.

Sum of 1st n natural or counting numbers

Again $S = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$ $S = n + (n-1) + (n-2) + \dots + 3 + 2 + 1$

On adding the above, we get

 $2S = (n + 1) + (n + 1) + \dots$ to n terms

or

$$S = n(n + 1)/2$$

2S = n(n+1)

Then Sum of first n natural number is n(n + 1) / 2

i.e.
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Sum of 1st n odd number

 $S = 1 + 3 + 5 + \dots + (2n - 1)$

Sum of first n odd number

 $S = 1 + 3 + 5 + \dots + (2n - 1)$

Since $S = n\{2a + (n-1)d\} / 2$, we find

$$S = \frac{n}{2} \{ 2.1 + (n-1)2 \} = \frac{n}{2} (2n) = n^2$$

or

 $S = n^2$

Then sum of first, n odd numbers is n^2 , i.e. $1 + 3 + 5 + + (2n - 1) = n^2$ Sum of the Squares of the first n natural nos.

Let $S = 1^2 + 2^2 + 3^2 + \dots + n^2$

We know $m^3 - (m - 1)^3 = 3m^2 - 3m + 1$ We put $m = 1, 2, 3, \dots, n$

$$+ n^{3} - (n - 1)^{3} = 3n^{2} - 3n + 1$$

Adding both sides term by term,

$$n^{3} = 3S - 3n(n + 1) / 2 + n$$

or
$$2n^{3} = 6S - 3n^{2} - 3n + 2n$$

or
$$6S = 2n^{3} + 3n^{2} + n$$

or
$$6S = n(2n^{2} + 3n + 1)$$

or
$$6S = n(n + 1)(2n + 1)$$

$$S = n(n + 1)(2n + 1) / 6$$

Thus sum of the squares of the first n natural numbers is $\frac{n(n+1)(2n+1)}{4}$

i.e.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Similarly, sum of the cubes of first n natural numbers can be found out as $\left\{\frac{n(n+1)}{2}\right\}^2$ by taking the identity

 m^4 – (m – 1) 4 = 4 m^3 – 6 m^2 + 4m – 1 and putting m = 1, 2, 3,..., n.

Thus

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$

EXERCISE 6 (A)

Choose the most appropriate option (a), (b), (c) or (d).

- 1. The nth element of the sequence 1, 3, 5, 7,.....is (a) n (b) 2n-1 (c) 2n+1 (d) none of these
- 2. The nth element of the sequence -1, 2, -4, 8 is (a) $(-1)^{n}2^{n-1}$ (b) 2^{n-1} (c) 2^{n} (d) none of these

3.
$$\sum_{i=4}^{7} \sqrt{2i-1} \text{ can be written as}$$

(a) $\sqrt{7} + \sqrt{9} + \sqrt{11} + \sqrt{13}$
(b) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{11} + 2\sqrt{13}$
(c) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{11} + 2\sqrt{13}$
(d) none of these.

4. The sum to ∞ of the series -5, 25, -125, 625, can be written as

	(a) $\sum_{k=1}^{\infty} (-5)^k$	(b) $\sum_{k=1}^{\infty} 5^k$	(c) $\sum_{k=1}^{\infty} -5^{k}$	(d) none of these
5.	The first three terms of (a) $-1, 0, 3$	sequence when nth terr (b) 1, 0, 2	m t _n is n ² – 2n are (c) –1, 0, –3	(d) none of these
6.	Which term of the prog (a) 21 st	ression –1, –3, –5, is (b) 20 th	s –39 (c) 19 th	(d) none of these
7.	The value of x such that (a) 15	t $8x + 4$, $6x - 2$, $2x + 7$ w (b) 2	vill form an AP is (c) 15/2 (d)	none of the these
8.		b. is n and n^{th} term is m. (b) $n + m - 2r$		(d) m + n - r
9.	The number of the term	ns of the series $10 + 9\frac{2}{3}$	+ $9\frac{1}{3}$ + 9 +	amount to 155 is
	(a) 30	(b) 31	(c) 32	(d) none of these
10.	The nth term of the ser (a) $3n - 10$		ns is 5n ² + 2n is (c) 10n – 3	(d) none of these
11.	The 20 th term of the pro (a) 58	0	is (c) 50	(d) none of these
12.	The last term of the ser (a) 44	ies 5, 7, 9, to 21 term (b) 43	is is (c) 45	(d) none of these
13.	The last term of the A.I	P. 0.6, 1.2, 1.8, to 13 te	rms is	
14	(a) 8.7 The sum of the series 9	(b) 7.8 5.1 to 100 terms is	(c) 7.7	(d) none of these
11.		(b) 18,900	(c) 19,900	(d) none of these
15.	The two arithmetic me	ans between –6 and 14 i	IS	
	(a) 2/3,1/3	(b) 2/3, $7\frac{1}{3}$	(c) $-2/3$, $-7\frac{1}{3}$	(d) none of these
16.	The sum of three intege (a) 2, 8, 5		-	-
17.	The sum of n terms of a (a) 8, 14, 20, 26	an AP is 3n ² + 5n. The se (b) 8, 22, 42, 68	eries is (c) 22, 68, 114,	(d) none of these
18.	The number of number (a) 5,090			(d) none of these
19.	The pth term of an AP (a) $n(3n + 1)$			
20.	The arithmetic mean be (a) 50	etween 33 and 77 is (b) 45	(c) 55	(d) none of these

21.	21. The 4 arithmetic means between -2 and 23 are							
	(a) 3, 13, 8, 18	(b) 18, 3, 8, 13	(c) 3, 8, 13, 18	(d) none of these				
22.	The first term of an A.F equal in magnitude bu	he first ten terms are						
	(a) $6\frac{4}{11}$	(b) 6	(c) 4/11	(d) none of these				
23.	The sum of a certain nu terms is	umber of terms of an AI	P series −8, −6, −4, is	552. The number of				
	(a) 12	(b) 13	(c) 11	(d) none of these				
24.	4. The first and the last term of an AP are –4 and 146. The sum of the terms is 7171. The number of terms is							
	(a) 101	(b) 100	(c) 99	(d) none of these				
25.	The sum of the series 3	$\frac{1}{2} + 7 + 10\frac{1}{2} + 14 + \dots$	to 17 terms is					
	(a) 530	(b) 535		(d) none of these				

6.4 GEOMETRIC PROGRESSION (G.P.)

If in a sequence of terms each term is constant multiple of the proceeding term, then the sequence is called a Geometric Progression (G.P). The constant multiplier is called the *common ratio*

Examples: 1) In 5, 15, 45, 135,.... common ratio is 15/5 = 3

- 2) In 1, 1/2, 1/4, 1/9 ... common ratio is (1/2)/1 = 1/2
- 3) In 2, -6, 18, -54, common ratio is (-6) / 2 = -3

Illustrations: Consider the following series :-

(i) $1 + 4 + 16 + 64 + \dots$

Here second term / first term = 4/1 = 4; third term / second term = 16/4 = 4

fourth term / third term = 64/16 = 4 and so on.

Thus, we find that, in the entire series, the ratio of any term and the term preceding it, is a constant.

(ii) $1/3 - 1/9 + 1/27 - 1/81 + \dots$

Here second term / 1^{st} term = (-1/9) / (1/3) = -1/3

third term / second term = (1/27) / (-1/9) = -1/3

fourth term / third term = (-1/81) / (1/27) = -1/3 and so on.

Here also, in the entire series, the ratio of any term and the term preceding one is constant.

The above mentioned series are known as Geometric Series.

Let us consider the sequence a, ar, ar², ar³,

 1^{st} term = a, 2^{nd} term = ar = ar 2^{-1} , 3^{rd} term = ar 2^{-1} , 4^{th} term = ar 3^{-1} = ar 4^{-1} ,

Similarly

nth term of GP $t_n = ar^{n-1}$

Thus, common ratio = $\frac{\text{Any term}}{\text{Preceding term}} = \frac{t_n}{t_{n-1}}$ = $\frac{1}{4} = \frac{1}{4} = \frac{1}{4}$

Thus, general term of a G.P is given by ar $^{n-1}$ and the general form of G.P. is $a + ar + ar^2 + ar^3 + \dots$

For example, $r = \frac{t_2}{t_1} = \frac{ar}{a}$

So
$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \frac{t_4}{t_3} = \dots$$

Example 1: If a, ar, ar², ar³, be in G.P. Find the common ratio.

Solution: 1^{st} term = a, 2^{nd} term = ar

Ratio of any term to its preceding term = ar/a = r = common ratio.

Example 2: Which term of the progression 1, 2, 4, 8,... is 256?

Solution:

$$a = 1, r = 2/1 = 2, n = ?t_n = 256$$

 $t_n = ar^{n-1}$

or $256 = 1 \times 2^{n-1}$ i.e., $2^8 = 2^{n-1}$ or, n - 1 = 8 i.e., n = 9

Thus 9th term of the G. P. is 256

6.5 GEOMETRIC MEAN

If a, b, c are in G.P we get $b/a = c/b \Rightarrow b^2 = ac$, b is called the geometric mean between a and c

Example 1: Insert 3 geometric means between 1/9 and 9.

Solution:	1/9, -, -, -, 9
	$a = 1/9, r = ?, n = 2 + 3 = 5, t_n = 9$
we know	$t_n = ar^{n-1}$
or	$1/9 \times r^{5-1} = 9$
or	$r^4 = 81 = 3^4 => r = 3$
Thus	1^{st} G. M = 1/9 × 3 = 1/3
	2^{nd} G. M = $1/3 \times 3 = 1$
	3^{rd} G. M = 1×3 = 3

6.10

Example 2: Find the G.P where 4th term is 8 and 8th term is 128/625

Solution: Let a be the 1st term and r be the common ratio.

 $ar^3 = 8$ and $ar^7 = 128 / 625$

By the question
$$t_4 = 8$$
 and $t_8 = \frac{128}{625}$

So

Therefore
$$ar^7 / ar^3 = \frac{128}{625 \cdot 8} \implies r^4 = 16 / 625 = (\pm 2/5)^4 \implies r = 2/5 \text{ and } -2/5$$

Now $ar^3 = 8 \Rightarrow a \times (2/5)^3 = 8 \Rightarrow a = 125$

Thus the G. P is

125, 50, 20, 8, 16/5,

When r = -2/5, a = -125 and the G.P is -125, 50, -20, 8, -16/5,.....

Finally, the G.P. is 125, 50, 20, 8, 16/5,

or, -125, 50, -20, 8, -16/5,.....

Sum of first n terms of a G P

Let a be the first term and r be the common ratio. So the first n terms are a, ar, ar^2 , ar ⁿ⁻¹. If S be the sum of n terms,

$$\begin{split} S_n &= a + ar + ar^2 + \dots + ar^{n-1} \dots (i) \\ \text{Now } rS_n &= ar + ar^2 + \dots + ar^{n-1} + ar^n \dots (ii) \\ \text{Subtracting (i) from (ii)} \\ S_n - rS_n &= a - ar^n \\ \text{or } S_n(1-r) &= a(1-r^n) \\ \text{or } & S_n &= a(1-r^n) / (1-r) \text{ when } r < 1 \\ S_n &= a(r^n-1) / (r-1) \text{ when } r > 1 \end{split}$$

If r = 1, then $S_n = a + a + a + \dots$ to n terms

If the nth term of the G. P be l then $\ell = ar^{n-1}$

Therefore,
$$S_n = (ar^n - a) / (r - 1) = (ar^{n-1}r - a) / (r - 1) = \frac{\ell r - a}{r - 1}$$

So, when the last term of the G. P is known, we use this formula.

Sum of infinite geometric series

$$\begin{split} S &= a \; (\; 1 - r^n \;) \; / \; (1 - r) \; \text{when} \; r < 1 \\ &= a \; (1 - 1/R^n) \; / \; (\; 1 - 1/R \;) \; (\text{since} \; r < 1 \;, \text{we take} \; r = 1/R). \end{split}$$

If $n \rightarrow \infty$, $1/R^n \rightarrow 0$

Thus $S_{\infty} = \frac{a}{1-r}, r < 1$

i.e. Sum of G.P. upto infinity is $\frac{a}{1-r}$, where r < 1

Also,
$$S_{\infty} = \frac{a}{1-r}$$
, if -1

Example 1: Find the sum of 1 + 2 + 4 + 8 + ... to 8 terms.,

Solution: Here a = 1, r = 2/1 = 2, n = 8Let $S = 1 + 2 + 4 + 8 + \dots$ to 8 terms $= 1 (2^8 - 1) / (2 - 1) = 2^8 - 1 = 255$ Example 2: Find the sum to n terms of $6 + 27 + 128 + 629 + \dots$

Solution: Required Sum= $(5 + 1) + (5^2 + 2) + (5^3 + 3) + (5^4 + 4) + ...$ to n terms $= (5 + 5^2 + 5^3 + + 5^n) + (1 + 2 + 3 + ... + n \text{ terms})$ $= \{5 (5^n - 1) / (5 - 1)\} + \{n (n + 1) / 2\}$ $= \{5 (5^n - 1) / 4\} + \{n (n + 1) / 2\}$

Example 3: Find the sum to n terms of the series

3 + 33 + 333 +

Solution: Let S denote the required sum.

i.e.
$$S = 3 + 33 + 333 + \dots$$
 to n terms
= 3 (1 + 11 + 111 + \dots to n terms)
= $\frac{3}{9}$ (9 + 99 + 999 + \dots to n terms)
= $\frac{3}{9}$ {(10 - 1) + (10² - 1) + (10³ - 1) + \dots + (10ⁿ - 1)}
= $\frac{3}{9}$ {(10 + 10² + 10³ + \dots + 10ⁿ) - n}
= $\frac{3}{9}$ {(10 (1 + 10 + 10² + \dots + 10ⁿ⁻¹) - n]
= $\frac{3}{9}$ [{10 (1 + 10 + 10² + \dots + 10ⁿ⁻¹) - n]
= $\frac{3}{9}$ [{10 (10ⁿ - 1) / (10 - 1)} - n]
= $\frac{3}{81}$ (10ⁿ⁺¹ - 10 - 9n)

$$=\frac{1}{27} (10^{n+1} - 9n - 10)$$

Example 4: Find the sum of n terms of the series 0.7 + 0.77 + 0.777 + ... to n terms **Solution:** Let S denote the required sum.

i.e.
$$S = 0.7 + 0.77 + 0.777 + \dots$$
 to n terms
 $= 7 (0.1 + 0.11 + 0.111 + \dots$ to n terms)
 $= \frac{7}{9} (0.9 + 0.99 + 0.999 + \dots$ to n terms)
 $= \frac{7}{9} \{(1 - 1/10) + (1 - 1/10^2) + (1 - 1/10^3) + \dots + (1 - 1/10^n)\}$
 $= \frac{7}{9} \{n - \frac{1}{10} (1 + 1/10 + 1/10^2 + \dots + 1/10^{n-1})\}$
So $S = \frac{7}{9} \{n - \frac{1}{10} (1 - 1/10^n) / (1 - 1/10)\}$
 $= \frac{7}{9} \{n - (1 - 10^{-n}) / 9)\}$
 $= \frac{7}{81} \{9n - 1 + 10^{-n}\}$

Example 5: Evaluate $0.21\dot{7}\dot{5}$ using the sum of an infinite geometric series.

Solution:
$$0.21\dot{7}\dot{5} = 0.2175757575 \dots$$

 $0.21\dot{7}\dot{5} = 0.21 + 0.0075 + 0.000075 + \dots$
 $= 0.21 + 75 (1 + 1/10^2 + 1/10^4 + \dots) / 10^4$
 $= 0.21 + 75 \{1 / (1 - 1/10^2) / 10^4$
 $= 0.21 + (75/10^4) \times 10^2 / 99$
 $= 21/100 + (^{3}4) \times (1/99)$
 $= 21/100 + 1/132$
 $= (693 + 25)/3300 = 718/3300 = 359/1650$

Example 6: Find three numbers in G. P whose sum is 19 and product is 216.

Solution: Let the 3 numbers be a/r, a, ar.

According to the question $a/r \times a \times ar = 216$

or $a^3 = 6^3 => a = 6$

So the numbers are 6/r, 6, 6r

Again 6/r + 6 + 6r = 19

or	6/r + 6r = 13			
or	$6 + 6r^2 = 13r$			
or	$6r^2 - 13r + 6 = 0$			
or	$6r^2 - 4r - 9r + 6 = 0$			
or	2r(3r - 2) - 3(3r - 2) = 2			
or	(3r-2)(2r-3) = 0 or, $r = 2/3$, $3/2$			
So the numbers are				
$6/(2/3), 6, 6 \times (2/3) = 9, 6, 4$				

or

 $6/(2/3), 6, 6 \times (2/3) = 9, 6, 4$ $6/(3/2), 6, 6 \times (3/2) = 4, 6, 9$

EXERCISE 6 (B)

Choose the most appropriate option (a), (b), (c) or (d)

1.	The 7 th term of the series (a) 384	s 6, 12, 24,is (b) 834	(c)	438	(d) none of these
2.	t _s of the series 6, 12, 24,. (a) 786	is (b) 768	(c)	867	(c) none of these
3.	t_{12} of the series -128, 64, (a) - 1/16	-32,is (b) 16	(c)	1/16	(d) none of these
4.	The 4 th term of the series (a) 0.5	s 0.04, 0.2, 1, is (b) 1/2	(c)	5	(d) none of these
5.	The last term of the seri (a) 512	es 1, <mark>2, 4, to 10 terms</mark> (b) 256		1024	(d) none of these
6.	The last term of the seri	es 1, –3, 9, –27 up to 7 te	erms	s is	
_	(a) 297	(b) 729	• • •	927	(d) none of these
7.	The last term of the seri	es x^2 , x, 1, to 31 term			
	(a) x^{28}	(b) 1/x	• • •	$1/x^{28}$	(d) none of these
8.	The sum of the series –2 (a) –1094			- 1049	(d) none of these
9.	The sum of the series 24	3, 81, 27, to 8 terms	is		
	(a) 36	(b) $\left(36\frac{13}{30}\right)$	(c)	$36\frac{1}{9}$	(d) none of these
10.	The sum of the series $\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{3}} + 1 + \frac{3}{\sqrt{3}} + \dots$ to 18 to	erm	s is	
	(a) 9841 $\frac{(1+\sqrt{3})}{\sqrt{3}}$	(b) 9841	(c)	$\frac{9841}{\sqrt{3}}$	(d) none of these

11.	The second term of a G (a) 16, 36, 24, 54,			(d) none of these
12.	The sum of 3 numbers (a) 3, 27, 9	of a G P is 39 and their j (b) 9, 3, 27	•	bers are (d) none of these
13.	In a G. P, the product o (a) 3/2	f the first three terms is (b) 2/3	27/8. The middle term (c) 2/5	is (d) none of these
14.	If you save 1 paise toda your total savings in tw	vo weeks will be		
	(a) ₹163	(b) ₹ 183	(c) ₹163.83	(d) none of these
15.	Sum of n terms of the s (a) 4/9 { 10/9 (10 ⁿ -1) (c) 4/9 (10 ⁿ -1) -n		6) 10/9 (10 ⁿ – 1) – n (d) none of these	
16.	Sum of n terms of the s (a) $1/9 \{n - (1 - (0.1)^n (0$		+ is (b) 1/9 {n − (1−(0.1) ⁿ), (d) none of these	/9}
17.	The sum of the first 20 t ratio is	erms of a G. P is 244 tim) terms. The common
	(a) $\pm \sqrt{3}$	(b) ±3	(c) $\sqrt{3}$	(d) none of these
18.	Sum of the series $1 + 3$	+ 9 + 27 +is 364. The	number of terms is	
	(a) 5	(b) 6	(c) 11	(d) none of these
19.	The product of 3 numb (a) 9, 3, 27	ers in G P is 729 and the (b) 27, 3, 9	e sum of squares is 819. (c) 3, 9, 27	The numbers are (d) none of these
20.	The sum of the series 1 (a) $2^n - 1$	+ 2 + 4 + 8 + to n term (b) 2n - 1	(c) $1/2^n - 1$	(d) none of these
21.	The sum of the infinite	<mark>GP 14, –</mark> 2, + 2/7, – 2/4	9, + is	
	(a) $4\frac{1}{12}$	(b) $12\frac{1}{4}$	(c) 12	(d) none of these
22.	The sum of the infinite (a) 0.33	G. P. 1 - 1/3 + 1/9 - 1/2 (b) 0.57	27 + is (c) 0.75	(d) none of these
23.	The number of terms to (a) 10	be taken so that 1 + 2 + (b) 13	+ 4 + 8 + will be 8191 is (c) 12	(d) none of these
24.	Four geometric means (a) 12, 36, 108, 324	between 4 and 972 are (b) 12, 24, 108, 320	(c) 10, 36, 108, 320	(d) none of these

illustrations:

(I) A person is employed in a company at ₹ 3000 per month and he would get an increase of ₹ 100 per year. Find the total amount which he receives in 25 years and the monthly salary in the last year.

) SOLUTION:

He gets in the 1st year at the Rate of 3000 per month; In the 2nd year he gets at the rate of ₹ 3100 per month; In the 3rd year at the rate of ₹ 3200 per month so on. In the last year the monthly salary will be ₹ {3000 + (25 – 1) × 100} = ₹ 5400

Total amount = ₹ 12 (3000 + 3100 + 3200 +... + 5400) $\left| \text{Use S}_n = \frac{n}{2}(a+l) \right|$ = ₹ 12 × 25/2 (3000 + 5400)

- = ₹ 150 × 8400
- = ₹ 12,60,000
- (II) A person borrows ₹ 8,000 at 2.76% Simple Interest per annum. The principal and the interest are to be paid in the 10 monthly instalments. If each instalment is double the preceding one, find the value of the first and the last instalment.

SOLUTION:

Interest to be paid = 2.76 × 10 × 8000 / 100 × 12 = ₹ 184

Total amount to be paid in 10 monthly instalment is ₹ (8000 + 184) = ₹ 8184 The instalments form a G P with common ratio 2 and so ₹ $8184 = a (2^{10} - 1) / (2 - 1)$, $a = 1^{st}$ instalment Here a = ₹ 8184 / 1023 = ₹ 8 The last instalment = ar $^{10-1}$ = 8 × 2⁹ = 8 × 512 = ₹ 4096

SUMMARY

- Sequence: An ordered collection of numbers a_1 , a_2 , a_3 , a_4 , ..., $a_{n'}$, ..., is a sequence if according to some definite rule or law, there is a definite value of a called the term or element of the sequence, corresponding to any value of the natural number n.
- An expression of the form $a_1 + a_2 + a_3 + \dots + a_n + \dots + a_n$ which is the sum of the ٠ elements of the sequence $\{a_n\}$ is called a *series*. If the series contains a finite number of elements, it is called a *finite series*, otherwise called *an infinite series*.
- Arithmetic Progression: A sequence a₁, a₂, a₃,, a_n is called an Arithmetic Progression ٠ (A.P.) when $a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1}$. That means A. P. is a sequence in which each term is obtained by adding a constant d to the preceding term. This constant 'd' is called the *common difference* of the A.P. If 3 numbers a, b, c are in A.P., we say

b - a = c - b or a + c = 2b; b is called the arithmetic mean between a and c.

 n^{th} term $(t_n) = a + (n-1) d$,

Where a = First Term

d = Common difference = $t_n - t_{n-1}$

Sum of n terms of AP=

$$s = \frac{n}{2} \left[2a + (n-1)d \right]$$

• Sum of the first n terms : Sum of 1st n natural or counting numbers

$$S = n(n + 1)/2$$

Sum of 1st n odd numbers : $S = n^2$

Sum of the Squares of the first, n natural numbers

$$=\frac{n(n+1)(2n+1)}{6}$$

sum of the cubes of the first n natural numbers is

$$\left\{\frac{n(n+1)}{2}\right\}^2$$

• **Geometric Progression (G.P).** If in a sequence of terms each term is constant multiple of the proceeding term, then the sequence is called a Geometric Progression (G.P). The constant multiplier is called the *common ratio*

$$= \frac{\text{Any term}}{\text{Preceding term}} = \frac{t_n}{t_{n-1}}$$
$$= ar^{n-1}/ar^{n-2} = r$$

• Sum of first n terms of a G P:

$$S_n = a (1 - r^n) / (1 - r)$$
 when $r < 1$

$$S_n = a(r^n - 1) / (r - 1)$$
 when $r > 1$

Sum of infinite geometric series

$$S_{\infty} = \frac{a}{1-r}, r < 1$$

- A.M. of a & b is = (a + b) / 2
- If a, b, c are in G.P we get b/a = c/b => b² = ac, b is called the geometric mean between a and c

EXERCISE 6 (C)

Choose the most appropriate option (a), (b), (c) or (d).

1.	Three numbers are in A form a G. P. The number		If 1, 5, 15 are added to th	nem respectively, they
	(a) 5, 7, 9	(b) 9, 5, 7		(d) none of these
2.	The sum of $1 + 1/3 + 1$			
	(a) 2/3			(d) none of these
3.	The sum of the infinite $(a) 1/2$			(d) mana of these
1	(a) $1/3$		(c) $2/3$	(d) none of these
4.	The sum of the first two common ratio is	0 terms of a G.P. 18 5/ 5	and the sum to minity	of the series is 5. The
	(a) 1/3	(b) 2/3	(c) -2/3	(d) none of these
5.	If p, q and r are in A.P.	and x, y, z are in G.P. t	hen x ^{q-r} . y ^{r-p} . z ^{p-q} is equ	al to
	(a) 0	(b) -1		(d) none of these
6.	The sum of three numb	ers in G.P. is 70. If the t	two extremes by multip	lied each by 4 and the
	mean by 5, the product			
			(c) 40, 20, 10	
7.	The sum of 3 numbers		19 be added to them re	spectively, the results
	are is G. P. The number (a) 26, 5, –16		(c) 5, 8, 2	(d) none of these
0				(d) none of these
8.	Given x, y, z are in G.P (a) A.P.	. and $x^{p} = y^{q} = z^{o}$, then (b) G.P.	$1/p$, $1/q$, $1/\sigma$ are in (c) Both A.P. and G.	P (d) none of these
0				(d) none of these
9.	If the terms $2x$, $(x+10)$ a			
	(a) 7	(b) 10	(c) 6	(d) none of these
10.	If A be the A.M. of two (a) A < G		titities x and y and G be (c) $A \ge G$	
11.	The A.M. of two positiv			
	(a) (72, 8)	(b) (70, 10)	(c) (60, 20)	(d) none of these
12.	Three numbers are in <i>A</i> numbers are in G.P. Th		5. If 8, 6, 4 be added to t	hem respectively, the
	(a) 2, 6, 7		(c) $3.5.7$	(d) none of these
13.	The sum of four numb			
101	numbers are			
	(a) 4, 8, 16, 32	(b) 4, 16, 8, 32	(c) 16, 8, 4, 20	(d) none of these
14.	A sum of ₹ 6240 is paid			t is ₹ 10 more than the
	preceeding installment (a) ₹ 36	(b) \gtrless 30	(c) ₹60	(d) none of these
15.	The sum of $1.03 + (1.03)$			() 01 01000
15.	(a) $103 \{(1.03)^n - 1\}$	(b) $103/3 \{(1.03)^n - 1\}$		(d) none of these
	(1) (())		, (-, (, -	()

16.	If x, y, z are in A.P. and (a) $(x - z)^2 = 4x$			(d) none of these
17.	The numbers x, 8, y are	in G.P. and the number		
18	The nth term of the seri			(d) none of these
10.	(a) 20	(b) 21		(d) none of these
19.	The sum of n terms of a	a G.P. whose first terms	s 1 and the common rat	tio is $1/2$, is equal to
	$1\frac{127}{128}$. The value of n is			
	(a) 7	(b) 8	(c) 6	(d) none of these
20.	t_4 of a G.P. in x, $t_{10} = y$ a	nd $t_{16} = z$. Then		
	(a) $x^2 = yz$		(c) $y^2 = zx$	(d) none of these
21.	If x, y, z are in G.P., the	n		
	(a) $y^2 = xz$ (b) y ($(z^2 + x^2) = x (z^2 + y^2)$	(c) $2y = x + z$	(d) none of these
22.	The sum of all odd num	nbers between 200 and 3	300 is	
	(a) 11,600	(b) 12,490	(c) 12,500	(d) 24,750
23.	The sum of all natural r (a) 28,405	numbers between 500 au (b) 24,805		ible by 13, is (d) none of these
24.	If unity is added to the	sum of any number of	terms of the A.P. 3, 5, 7	7, 9, the resulting
	sum is (a) (a) more fact cube	(b) 'a' porfact aquara	(a) $(a' number)$	(d) none of these
25	(a) 'a' perfect cube			(d) none of these
25.	The sum of all natural r (a) 10,200	(b) 15,200	(c) 16,200	(d) none of these
26.	The sum of all natural r (a) 2,200	umbers from 100 to 300 (b) 2,000) which are exactly divi (c) 2,220	
27.	A person pays ₹ 975 b	y monthly instalment	each less then the forr	ner by ₹ 5. The first
	instalment is ₹ 100. The	-	-	
	(a) 10 months		(c) 14 months	
28.	A person saved ₹ 16,50 than he did in the prece			
	(a) ₹ 1000	(b) ₹ 1500	(c) ₹ 1200	(d) none of these
29.	At 10% C.I. p.a., a sum o is	of money accumulate to	₹ 9625 in 5 years. The s	um invested initially
	(a) ₹5976.37	(b) ₹5970	(c) ₹ 5975	(d) ₹ 5370.96
30.	1 1		5 and is growing at 2% p	a C.I. the population
	is the year 2015 is estim		(a) (700	(d) none of these
	(a) 5705	(b) 6005	(c) 6700	(d) none of these

ANSWERS

Exercise 6	(A)													
1. (b)	2.	(a)	3.	(a)	4.	(a)	5.	(a)	6.	(b)	7.	(c)	8.	(d)
9. (a), (b)	10	(c)	11.	(a)	12.	(c)	13.	(b)	14.	(a)	15.	(b)	16.	(c),(d)
17. (a)	18.	(b)	19.	(b)	20.	(c)	21.	(c)	22.	(a)	23.	(b)	24.	(a)
25. (c)														
Exercise 6	(B)													
1. (a)	2.	(b)	3.	(c)	4.	(c)	5.	(a)	6.	(b)	7.	(c)	8.	(a)
9. (d)	10.	(a)	11.	(c)	12.	(c)	13.	(a)	14.	(c)	15.	(a)	16.	(b)
17. (a)	18.	(b)	19.	(c)	20.	(a)	21.	(b)	22.	(c)	23.	(b)	24.	(a)
Exercise 6 (C)														
1. (a)	2.	(d)	3.	(b)	4.	(b), (c)) 5.	(c)	6.	(b), (c	c) 7.	(a), (b) 8.	(a)
9. (c)	10.	(b)	11.	(a)	12.	(c)	13.	(a)	14.	(d)	15.	(b)	16.	(a)
17. (a), (b)	18.	(c)	19.	(b)	20.	(c)	21.	(a)	22.	(c)	23.	(a)	24.	(b)
25. (c)	26.	(a)	27.	(b)	28.	(c)	29.	(a)	30.	(d)				

ADDITIONAL QUESTION BANK

1.	If a , b , c are in A.P. as well as in G.P. then –				
	(a) They are also in H.P. (H	armonic Progression)	(b) Their reciprocal	s are in A.P.	
	(c) Both (a) and (b) are true		(d) Both (a) and (b)	are false	
2.	If <i>a</i> , <i>b</i> , <i>c</i> be respective a(q-r)+b(r-p)+c(p-q)		terms of an A.	P. the value of	
	(a) 0	(b) 1	(c) –1	(d) None	
3.	If the p^{th} term of an A.P. is	q and the q^{th} term is p th	e value of the r^{th} term	n is	
	(a) $p - q - r$	(b) $p + q - r$	(c) $p + q + r$	(d) None	
4.	If the p^{th} term of an A.P. is	q and the q^{th} term is p th	the value of the $(p+q)$	th term is	
	(a) 0	(b) 1	(c) –1	(d) None	
5.	The sum of first <i>n</i> natural n	umber is			
	(a) (<i>n</i> /2)(<i>n</i> +1)	(b) (<i>n</i> /6)(<i>n</i> +1)(2 <i>n</i> +1)	(c) $[(n/2)(n+1)]^2$	(d) None	

6.	The sum of square of first <i>i</i>	<i>i</i> natural number is	·	
	(a) (<i>n</i> /2)(<i>n</i> +1)	(b) (<i>n</i> /6)(<i>n</i> +1)(2 <i>n</i> +1)	(c) $[(n/2)(n+1)]^2$	(d) None
7.	The sum of cubes of first n	natural number is	·	
	(a) (<i>n</i> /2)(<i>n</i> +1)	(b) (<i>n</i> /6)(<i>n</i> +1)(2 <i>n</i> +1)	(c) $[(n/2)(n+1)]^2$	(d) None
8.	The sum of a series in A.I number of terms is		17 and the commor	a difference −2. the
	(a) 6	(b) 12	(c) 6 or 12	(d) None
9.	Find the sum to n terms of	(1-1/n) + (1-2/n) + (1-3/n)	/n) +	
	(a) ½(<i>n</i> –1)	(b) ½(<i>n</i> +1)	(c) (<i>n</i> –1)	(d) (<i>n</i> +1)
10.	If S_n the sum of first <i>n</i> term	s in a series is given by 2	$2n^2 + 3n$ the series is	in
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None
11.	The sum of all natural num	bers between 200 and 4	00 which are divisib	le by 7 is
	(a) 7,730	(b) 8,729	(c) 7,729	(d) 8,730
12.	The sum of natural number	rs upto 200 excluding th	ose divisible by 5 is	·
	(a) 20,100	(b) 4,100	(c) 16,000	(d) None
13.	If <i>a</i> , <i>b</i> , <i>c</i> be the sums (a/p)(q-r)+(b/q)(r-p)+(a/p)(r-p)(r-p)(r-p)(r-p)(r-p)(r-p)(r-p)(r-		pectively of an A	P. the value of
	(a) 0	(b) 1	(c) –1	(d) None
14.	If S_1, S_2, S_3 be the respective $S_3 \div (S_2 - S_1)$ is given by	-	ms of <i>n</i> , 2 <i>n</i> , 3 <i>n</i> an	A.P. the value of
	(a) 1	(b) 2	(c) 3	(d) None
15.	The sum of <i>n</i> terms of two the two series are equal.	A.P.s are in the ratio of (7n-5)/(5n+17) . Then t	the term of
	(a) 12	(b) 6	(c) 3	(d) None
16.	Find three numbers in A.P.	whose sum is 6 and the	e product is –24	
	(a) -2, 2, 6	(b) –1, 1, 3	(c) 1, 3, 5	(d) 1, 4, 7
17.	Find three numbers in A.P.	whose sum is 6 and the	e sum of whose squa	re is 44.
	(a) –2, 2, 6	(b) –1, 1, 3	(c) 1, 3, 5	(d) 1, 4, 7

- 18. Find three numbers in A.P. whose sum is 6 and the sum of their cubes is 232.
 - (a) -2, 2, 6 (b) -1, 1, 3 (c) 1, 3, 5 (d) 1, 4, 7
- 19. Divide 12.50 into five parts in A.P. such that the first part and the last part are in the ratio of 2:3
 - (a) 2, 2.25, 2.5, 2.75, 3 (b) -2, -2.25, -2.5, -2.75, -3 (c) 4, 4.5, 5, 5.5, 6 (d) -4, -4.5, -5, -5.5, -6
- 20. If *a*, *b*, *c* are in A.P. then the value of $(a^3 + 4b^3 + c^3)/[b(a^2 + c^2)]$ is (a) 1 (b) 2 (c) 3 (d) None 21. If *a*, *b*, *c* are in A.P. then the value of $(a^2 + 4ac + c^2)/(ab + bc + ca)$ is (a) 1 (b) 2 (c) 3 (d) None (b) G.P. (a) A.P. (c) H.P. (d) None 23. If *a*, *b*, *c* are in A.P. then $a^{2}(b+c)$, $b^{2}(c+a)$, $c^{2}(a+b)$ are in _____. (b) G.P. (c) H.P. (a) A.P. (d) None
- 24. If (b+c)⁻¹, (c+a)⁻¹, (a+b)⁻¹ are in A.P. then a², b², c² are in _____.
 (a) A.P.
 (b) G.P.
 (c) H.P.
 (d) None
- 25. If a², b², c² are in A.P. then (b + c), (c + a), (a + b) are in _____.
 (a) A.P.
 (b) G.P.
 (c) H.P.
 (d) None
- 26. If a^2 , b^2 , c^2 are in A.P. then a/(b+c), b/(c+a), c/(a+b) are in _____.
 - (a) A.P. (b) G.P. (c) H.P. (d) None
- 27. If (b + c a)/a, (c + a b)/b, (a + b c)/c are in A.P. then a, b, c are in _____.
- (a) A.P. (b) G.P. (c) H.P. (d) None
- 28. If $(b-c)^2$, $(c-a)^2$, $(a-b)^2$ are in A.P. then (b-c), (c-a), (a-b) are in _____.
 - (a) A.P. (b) G.P. (c) H.P. (d) None

29.	. If $a b c$ are in A.P. then $(b + c)$, $(c + a)$, $(a + b)$ are in					
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None		
30.). Find the number which should be added to the sum of any number of terms of the A.P. 3, 5, 7, 9, 11resulting in a perfect square.					
	(a) –1	(b) 0	(c) 1	(d) None		
31.	The sum of n terms of an A	.P. is $2n^2 + 3n$. Find the	$e n^{th}$ term.			
	(a) 4n + 1	(b) 4n - 1	(c) 2n + 1	(d) 2n - 1		
32.	The p^{th} term of an A.P. is 1	$/q$ and the q^{th} term is $1/q$	p. The sum of the (p	q) th term is		
	(a) $\frac{1}{2}(pq+1)$	(b) $\frac{1}{2}(pq-1)$	(c) pq+1	(d) pq-1		
33.	The sum of <i>p</i> terms of an <i>A</i>	A.P. is q and the sum of	q terms is p . The su	m of $p + q$ terms is		
	(a) - (p + q)	(b) p + q	(c) $(p - q)^2$	(d) $p^2 - q^2$		
34.	If $S_{1,}S_{2,}S_{3}$ be the sums of <i>n</i> respective common different			eing unity and the		
	(a) 1	(b) 2	(c) –1	(d) None		
35.	The sum of all natural numb	pers between 500 and 10	00, which are divisibl	e by 13, is		
	(a) 28,400	(b) 28,405	(c) 28,410	(d) None		
36.	The sum of all natural num	bers from 100 and 300,	which are divisible b	y 4, is		
	(a) 10,200	(b) 30,000	(c) 8,200	(d) 2,200		
37.	The sum of all natural num	pers from 100 to 300 excl	uding those, which a	are divisible by 4, is		
	(a) 10,200	(b) 30,000	(c) 8,200	(d) 2,200		
38.	The sum of all natural num					
50.	(a) 10,200	(b) 30,000	(c) 8,200	(d) 2,200		
39.	The sum of all natural num					
07.	(a) 10,200	(b) 30,000	(c) 8,200	(d) 2,200		
40.	The sum of all natural num					
	(a) 10,200	(b) 8,200	(c) 2,200	(d) 16,200		
	× / /			× / / /		

41.	If the <i>n</i> terms of two A.P.s are in the ratio $(3n+4)$: $(n+4)$ the ratio of the fourth term is						
	(a) 2	(b) 3	(c) 4	(d) None			
42.	If a , b , c , d are in A.P. then						
	(a) $a^2 - 3b^2 + 3c^2 - d^2 = 0$	(b) $a^2+3b^2+3c^2+d^2=0$	(c) $a^2 + 3b^2 + 3c^2 - d$	$^{2}=0$ (d) None			
43.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are in A.P. ther	1					
	(a) $a - b - d + e = 0$	(b) $a - 2c + e = 0$	(c) $b - 2c + d = 0$	(d) all the above			
44.	The three numbers in A.P.	whose sum is 18 and pro	oduct is 192 are	·			
	(a) 4, 6, 8	(b) -4, -6, -8	(c) 8, 6, 4	(d) both (a) & (c)			
45.	The three numbers in A.P.,	whose sum is 27 and the	sum of their squares	is 341, are			
	(a) 2, 9, 16 (b) 16, 9, 2	(C) both (a) and (b)) (d) -2, -9, -16				
46.	The four numbers in A.P., w	whose sum is 24 and the	ir product is 945, are	2			
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(b) 2, 4, 6, 8 (c) 5, 9, 13, 17				
47.	The four numbers in A.P., w	hose sum is 20 and the sum of their squares is 120, a		is 120, are			
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None			
48.	The four numbers in A.P. with the sum of second and third being 22 and the product of the first and fourth beinf 85 are						
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None			
49.	The five numbers in A.P. w	ith their sum 25 and the	sum of their square	s 135 are			
	(a) 3, 4, 5, 6, 7	(b) 3, 3.5, 4, 4.5, 5	(c) -3, -4, -5, -6, -7				
	(d) -3, -3.5, -4, -4.5, -5						
50.	The five numbers in A.P. w	rith the sum 20 and prod	luct of the first and l	ast 15 are			
	(a) 3, 4, 5, 6, 7	(b) 3, 3.5, 4, 4.5, 5	(c) -3, -4, -5, -6, -7				
	(d) -3, -3.5, -4, -4.5, -5						
51.	The sum of n terms of 2, 4,	6, 8 is					
	(a) n(n+1)	(b) (n/2)(n+1)	(c) n(n-1)	(d) $(n/2)(n-1)$			
52.	The sum of n terms of $a+b$,	2a, 3a–b, is					
	(a) n(a–b)+2b	(b) n(a+b)	(c) both the above	(d) None			

53.	The sum of <i>n</i> terms of $(x + y)$						
	(a) $(x + y)^2 - 2(n - 1)xy$	(b) $n(x+y)^2 - n(n-1)xy$	(c) both the above	(d) None			
54.	The sum of <i>n</i> terms of $(1/n)$	(n-1), (1/n) (n-2), (1/n)	(n–3) is				
	(a) 0	(b) (1/2)(n-1)	(c) (1/2)(n+1)	(d) None			
55.	The sum of n terms of 1.4, 3	8.7, 5.10 Is					
	(a) $(n/2)(4n^2+5n-1)$	(b) $n(4n^2+5n-1)$	(c) $(n/2)(4n^2-5n-1)$	(d) None			
56	The sum of u terms of 12^{-2}	2 5 2 7 2 i c					
56.	The sum of <i>n</i> terms of 1^2 , 3^2		<i>,</i> , <i>,</i> , , , , , , , , , , , , , , ,	/ .			
	(a) $(n/3)(4n^2-1)$	(b) $(n/2)(4n^2-1)$	(c) $(n/3)(4n^2+1)$	(d) None			
57.	The sum of n terms of 1, (1	+ 2), (1 + 2 + 3) is					
	(a) $(n/3)(n+1)(n-2)$	(b) (<i>n</i> /3)(<i>n</i> +1)(<i>n</i> +2)	(c) <i>n</i> (<i>n</i> +1)(<i>n</i> +2)	(d) None			
58.	The sum of n terms of the s	eries $1^2/1 + (1^2 + 2^2)/2 + (1^2)$	² +2 ² +3 ²)/3+is				
	(a) $(n/36)(4n^2 + 15n + 17)$	(b) $(n/12)(4n^2+15n+17)$					
	(c) $(n/12)(4n^2+15n+17)$	(d) None					
50			0				
59.	The sum of <i>n</i> terms of the s	eries $2.4.6 + 4.6.8 + 6.8.1$					
	(a) $2n(n^3+6n^2+11n+6)$		(b) $2n(n^3-6n^2+11n-6)$				
	(c) $n(n^3+6n^2+11n+6)$		(d) $n(n^3+6n^2+11n-6)$)			
60.	The sum of <i>n</i> terms of the s	eries $1.3^2 + 4.4^2 + 7.5^2 + 1$	0.6 ² +is				
	(a) $(n/12)(n+1)(9n^2+49n+44)$) - 8 <i>n</i>	(b) $(n/12)(n+1)(9n^2$	+49n+44)+8n			
	(c) $(n/6)(2n+1)(9n^2+49n+44)$) - 8 <i>n</i>	(d) None				
) (11	(0) 110110				
61.	The sum of <i>n</i> terms of the s	eries $4 + 6 + 9 + 13 \dots$. is				
	(a) $(n/6)(n^2+3n+20)$	(b) $(n/6)(n+1)(n+2)$	(c) $(n/3)(n+1)(n+2)$	(d) None			
62.	The sum to <i>n</i> terms of the s	eries 11, 23, 59, 167	is				
	(a) $3^{n+1}+5n-3$	(b) $3^{n+1}+5n+3$	(c) $3^{n}+5n-3$	(d) None			
63.	The sum of n terms of the s	eries 1/(4.9)+1/(9.14)+1/((14.19)+1/(19.24)+	is			
	(a) $(n/4)(5n+4)^{-1}$	(b) (<i>n</i> /4)(5 <i>n</i> +4)	(c) $(n/4)(5n-4)^{-1}$	(d) None			
64.	The sum of <i>n</i> terms of the s	eries 1 + 3 + 5 +	Is				
	(a) n^2	(b) $2n^2$	(c) $n^2/2$	(d) None			
	× / IV	× / ∠ /k	() / / / -				

6.26

65. The sum of *n* terms of the series $2 + 6 + 10 + \dots$ is (b) n^2 (a) $2n^2$ (c) $n^2/2$ (d) $4n^2$ 66. The sum of *n* terms of the series $1.2 + 2.3 + 3.4 + \dots$ Is (a) (n/3)(n+1)(n+2)(b) (n/2)(n+1)(n+2) (c) (n/3)(n+1)(n-2)(D) None 67. The sum of *n* terms of the series 1.2.3 + 2.3.4 + 3.4.5 +is (b) (n/3)(n+1)(n+2)(n+3)(a) (n/4)(n+1)(n+2)(n+3)(c) (n/2)(n+1)(n+2)(n+3)(d) None 68. The sum of *n* terms of the series $1.2+3.2^2+5.2^3+7.2^4+...$ is (a) $(n-1)2^{n+2}-2^{n+1}+6$ (b) $(n+1)2^{n+2}-2^{n+1}+6$ (c) $(n-1)2^{n+2}-2^{n+1}-6$ (d) None 69. The sum of *n* terms of the series 1/(3.8)+1/(8.13)+1/(13.18)+... is (b) $(n/2)(5n+3)^{-1}$ (c) $(n/2)(5n-3)^{-1}$ (a) $(n/3)(5n+3)^{-1}$ (d) None 70. The sum of *n* terms of the series 1/1+1/(1+2)+1/(1+2+3)+... is (a) $2n(n+1)^{-1}$ (c) $2n(n-1)^{-1}$ (b) *n*(*n*+1) (d) None 71. The sum of *n* terms of the series $2^2+5^2+8^2+\ldots$ is (a) $(n/2)(6n^2+3n-1)$ (b) $(n/2)(6n^2-3n-1)$ (c) $(n/2)(6n^2+3n+1)$ (d) None 72. The sum of *n* terms of the series $1^2+3^2+5^2+\ldots$ is (a) $\frac{n}{3}(4n^2-1)$ (b) $n^2(2n^2+1)$ (c) *n*(2*n*–1) (d) n(2n+1)73. The sum of *n* terms of the series 1.4 + 3.7 + 5.10 + ... is (a) $\frac{n}{3} (4n^2 + 5n + 5)$ (b) $(n/2)(5n^2 + 4n - 1)$ (c) $(n/2)(4n^2+5n+1)$ (d) None 74. The sum of *n* terms of the series $2.3^2 + 5.4^2 + 8.5^2 + \dots$ is (a) $(n/12)(9n^3+62n^2+123n+22)$ (b) $(n/12)(9n^3-62n^2+123n-22)$ (c) $(n/6)(9n^3+62n^2+123n+22)$ (d) None 75. The sum of *n* terms of the series $1 + (1 + 3) + (1 + 3 + 5) + \dots$ is (b) (n/6)(n+1)(n+2) (c) (n/3)(n+1)(2n+1) (d) None (a) (n/6)(n+1)(2n+1)

- 76. The sum of *n* terms of the series $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$ is (a) $(n/12)(n+1)^2(n+2)$ (b) $(n/12)(n-1)^2(n+2)$ (c) $(n/12)(n^2-1)(n+2)$ (d) None 77. The sum of *n* terms of the series $1+(1+1/3)+(1+1/3+1/3^2)+\dots$ is (b) $(3/2)[n-(1/2)(1-3^{-n})]$ (a) $(3/2)(1-3^{-n})$ (c) Both (d) None 78. The sum of *n* terms of the series n.1+(n-1).2+(n-2).3+ is (a) (n/6)(n+1)(n+2)(b) (n/3)(n+1)(n+2) (c) (n/2)(n+1)(n+2) (d) None 79. The sum of *n* terms of the series $1 + 5 + 12 + 22 + \dots$ is (a) $(n^2/2)(n+1)$ (b) $n^2(n+1)$ (c) $(n^2/2)(n-1)$ (d) None 80. The sum of *n* terms of the series $4 + 14 + 30 + 52 + 80 + \dots$ is (a) $n(n+1)^2$ (b) $n(n-1)^2$ (c) $n(n^2-1)$ (d) None 81. The sum of *n* terms of the series 3 + 6 + 11 + 20 + 37 + is (a) $2^{n+1} + (n/2)(n+1) - 2$ (b) $2^{n+1} + (n/2)(n+1) - 1$ (c) $2^{n+1} + (n/2)(n-1) - 2$ (d) None 82. The n^{th} terms of the series is $1/(4.7) + 1/(7.10) + 1/(10.13) + \dots$ is (a) $(1/3)[(3n+1)^{-1}-(3n+4)^{-1}]$ (b) $(1/3)[(3n-1)^{-1}-(3n+4)^{-1}]$ (c) $(1/3)[(3n+1)^{-1}-(3n-4)^{-1}]$ (d) None 83. In question No.(82) the sum of the series upto *n* is (a) $(n/4)(3n+4)^{-1}$ (b) $(n/4)(3n-4)^{-1}$ (c) $(n/2)(3n+4)^{-1}$ (d) None 84. The sum of *n* terms of the series $1^2/1+(1^2+2^2)/(1+2)+(1^2+2^2+3^2)/(1+2+3)+\dots$ is (a) (n/3)(n+2)(b) (n/3)(n+1)(c) (n/3)(n+3)(d) None 85. The sum of *n* terms of the series $1^3/1+(1^3+2^3)/2+(1^3+2^3+3^3)/3+...$ is
 - (a) (n/48)(n+1)(n+2)(3n+5) (b) (n/24)(n+1)(n+2)(3n+5)
 - (c) (n/48)(n+1)(n+2)(5n+3) (d) None

86.	The value of $n^2 + 2n[1+2+3++(n-1)]$ is					
	(a) n ³	(b) n ²	(c) <i>n</i>	(d) None		
87.	2^{4n} -1 is divisible by					
	(a) 15	(b) 4	(c) 6	(d) 64		
88.	5 Zivi j					
	(a) 15	(b) 4	(c) 6	(d) 64		
89.	n(n-1)(2n-1) is divisible by					
00	(a) 15	(b) 4	(c) 6	(d) 64		
90.	$7^{2n} + 16n - 1$ is divisible by (a) 15	(b) 4	(c) 6	(d) 64		
01				(u) 04		
91.	The sum of <i>n</i> terms of the s (a) (<i>n</i> /2)(<i>n</i> +1)(2 <i>n</i> +3)	+2n is is given by (b) $(n/2)(n+1)(3n+2)$)			
	(c) $(n/2)(n+1)(3n-2)$		(d) $(n/2)(n+1)(3n+2)$ (d) $(n/2)(n+1)(2n-3)$			
92.	92. The sum of <i>n</i> terms of the series whose n^{th} term $\frac{1}{2}$ (a) (n-1)2 ⁿ⁺¹ +2 (b) (n+1)2 ⁿ⁺¹ +2					
			(c) $(n-1)2^{n}+2$	(d) None		
93.	The sum of n terms of the s	eries whose n^{th} term 5.3	$3^{n+1}+2n$ is is given by			
	(a) $(5/2)(3^{n+2}-9)+n(n+1)$		$(b)(2/5)(3^{n+2}-9)+n(n+1)$			
	(c) $(5/2)(3^{n+2}+9)+n(n+1)$		(d) None			
94.	If the third term of a G.P. is	the square of the first an	d the fifth term is 64	the series would be		
	$(a) 4 + 8 + 16 + 32 + \dots$		(b) 4 – 8 + 16 – 32 +			
	(c) both		(d) None			
95.	Three numbers whose sum	uis 15 are in A P but if		4 19 respectively		
<i>)</i> 0.	they are in G.P. The number		they are added by I	, 4, 17 respectively		
	(a) 2, 5, 8	(b) 26, 5, –16	(c) Both	(d) None		
96.	If a, b, c are the p^{th} , q^{th} are	nd r th terms of a G.P. r	espectively the valu	ue of a ^{q-r} .b ^{r-p} .c ^{p-q}		
	is (a) 0	(b) 1	(c) – 1	(d) None		
	(*) 0	(~) ±				

97. If a, b, c are in A.P. and	l x, y, z in G.P. then the valu	ue of $x^{b-c}.y^{c-a}.z^{a-b}$ is	
(a) 0	(b) 1	(c) – 1	
98. If <i>a, b, c</i> are in A.P. and	x, y, z in G.P. then the valu	e of $(x^b.y^c.z^a)$ \div $(x^c.y^c.y^c)$	$v^{a}.z^{b}$) is
(a) 0	(b) 1	(c) –1	(d) None
99. The sum of n terms of	the series 7 + 77 + 777 +	is	
(a) $(7/9)[(1/9)(10^{n+1}-10)]$	0)-n]	(b) (9/10)[(1/9)(1	0 ⁿ⁺¹ -10)-n]
(c) $(10/9)[(1/9)(10^{n+1}-$	10)-n]	(d) None	
100. The least value of n for 7000 is	which the sum of n terms of	f the series $1 + 3 + 3^2 + 3^2$	is greater tha
(a) 9	(b) 10	(c) 8	(d) 7
101. If 'S' be the sum, 'P' the 'P' is the of S ⁿ		f the reciprocals of <i>n</i>	terms in a G.P. the
(a) Arithmetic Mean	(b) Geometric Mean	(c) Harmonic Mea	ın (d) None
102. Sum upto ∞ of the seri	es $8+4\sqrt{2}+4+$ is		
(a) $8(2+\sqrt{2})$	(b) $8(2-\sqrt{2})$	(c) $4(2+\sqrt{2})$	(d) $4(2-\sqrt{2})$
103. Sum upto ∞ of the seri	es $1/2+1/3^2+1/2^3+1/3^4+1/2^4$	$2^5 + 1/3^6 + \dots$ is	
(a) 19/24	(b) 24/19	(c) 5/24	(d) None
104. If $1+a+a^2+\infty = x$	and $1+b+b^2+\infty=y$ the	hen $1 + ab + a^2b^2 + .$	∞ is given b
(a) (xy)/(x+y-1)	(b) (xy)/(x-y-1)	(c) (xy)/(x+y+1)	(d) None
105. If the sum of three nun	nbers in G.P. is 35 and their	product is 1000 the	numbers are
(a) 20, 10, 5	(b) 5, 10, 20	(c) both	(d) None
106. If the sum of three num 	bers in G.P. is 21 and the su	m of their squares is	189 the numbers ar
(a) 3, 6, 12	(b) 12, 6, 3	(c) both	(d) None
107. If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. the	the value of $a(b^2+c^2)-c(a^2)$	² +b ²) is	
(a) 0	(b) 1	(c) – 1	(d) None

108. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in G.P. then the value of $b(ab-cd)-(c+a)(b^2-c^2)$ is						
(a) 0	(b) 1	(c) – 1	(d) None			
109. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in G.P. the	n the value of (ab+bc+ce	$(a^2+b^2+c^2)(b^2+c$	$^{2}+d^{2}$) is			
(a) 0	(b) 1	(c) –1	(d) None			
110. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in G.P. the	n a+b, b+c, c+d are in					
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			
111. If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. then a	$a^{2}+b^{2}$, $ab+bc$, $b^{2}+c^{2}$ are	in				
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			
112. If <i>a</i> , <i>b</i> , <i>x</i> , <i>y</i> , <i>z</i> are positive <i>z</i> =(2ab)/(a+b) then	e numbers such that a , x	<i>b</i> are in A.P. and <i>a</i> ,	<i>y</i> , <i>b</i> are in G.P. and			
(a) <i>x</i> , <i>y</i> , <i>z</i> are in G.P.	(b) $x \ge y \ge z$	(c) both	(d) None			
113. If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. then t	he value of (a-b+c)(a+b	$(a^{2}+b^{2}-(a+b+c)(a^{2}+b^{2}+b^{2}))$	$-c^2$) is given by			
(a) 0	(b) 1	(c) – 1	(d) None			
114. If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. then the value of $a(b^2+c^2)-c(a^2+b^2)$ is given by						
(a) 0	(b) 1	(c) –1	(d) None			
115. If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. then t	he value of $a^2b^2c^2(a^{-3}+$	$b^{-3}+c^{-3}$)-($a^3+b^3+c^3$) is	s given by			
(a) 0	(b) 1	(c) – 1	(d) None			
116. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in G.P. the	$(a-b)^2, (b-c)^2, (c-d)^2$	re in				
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			
117. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in G.P. the	the value of $(b-c)^2+(c-$	$(a)^{2} + (d-b)^{2} - (a-d)^{2}$ is	given by			
(a) 0	(b) 1	(c) –1	(d) None			
118. If (a-b), (b-c), (c-a) are i	n G.P. then the value of	(a+b+c) ² -3(ab+bc+ca	a) is given by			
(a) 0	(b) 1	(c) –1	(d) None			
119. If $a^{1/x}=b^{1/y}=c^{1/z}$ and <i>a</i> , <i>b</i> ,						
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			

120. If $x = a + a/r + a/r^2 + \infty$, $y = b - b/r + b/r^2 \infty$, and $z = c + c/r^2 + c/r^4 +$						
∞ , then the value of $\frac{xy}{z} - \frac{ab}{c}$ is						
(a) 0	(b) 1	(c) – 1	(d) None			
121. If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. <i>a</i> , <i>x</i> , <i>b</i> as	re in G.P. and b, y, c are	in G.P then x^2 , b^2 ,	y ² are in			
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			
122. If a, b-a, c-a are in G.P. a	a=b/3=c/5 then a, b, b	c are in				
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			
123. If a, b, (c+1) are in G.P. a	nd a = $(b-c)^2$ then a, b, c	are in				
(a) A.P.	(b) G.P.	(c) H.P.	(d) None			
124. If $S_1, S_2, S_3, \dots, S_n$ are t	he sums of infinite G.P.	s whose first terms a	are 1, 2, 3n and			
whose common ratios are	$1/2, 1/3, \dots 1/(n+1)$ th	then the value of S_1 +	$S_2 + S_3 + \dots S_n$ is			
(a) (n/2) (n+3)	(b) (n/2) (n+2)	(c) (n/2) (n+1)	(d) $n^2/2$			
125. The G.P. whose 3^{rd} and 6^{th}	-	•				
(a) 4, -2, 1	(b) 4, 2, 1					
126. In a G.P. if the $(p+q)^{\text{th}}$ term		rm is n then the p^{th} to	erm is			
(a) $(mn)^{1/2}$	(b) mn	(c) (m+n)	(d) (m-n)			
127. The sum of n terms of the s	series is $1/\sqrt{3} + 1 + 3/\sqrt{3} + 1$	+				
(a) $(1/6) (3+\sqrt{3}) (3^{n/2}-1)$		(b) (1/6) ($\sqrt{3}$ +1) (3	3 ^{n/2} -1)			
(c) $(1/6) (3+\sqrt{3}) (3^{n/2}+1)$		(d) None				
128. The sum of n terms of the s	series $5/2 - 1 + 2/5 - \dots$	is				
(a) $(1/14) (5^{n}+2^{n})/5^{n-2}$	(b) $(1/14) (5^{n}-2^{n})/5^{n-2}$	(c) both	(d) None			
129. The sum of n terms of the	series 0.3 + 0.03 + 0.003 -	+is				
(a) $(1/3)(1-1/10^{n})$	(b) $(1/3)(1+1/10^n)$	(c) both	(d) None			
130. The sum of first eight terms ratio is	s of G.P. is five times the	sum of the first four t	erms. The common			
(a) $\sqrt{2}$	(b) $-\sqrt{2}$	(c) both	(d) None			

131. If the sum of <i>n</i> terms of a G.P. with first term 1 and common ratio $1/2$ is $1+127/128$, the value of <i>n</i> is					
(a) 8	(b) 5	(c) 3	(d) None		
132. If the sum of <i>n</i> terms of a (G.P. with last term 128 and	d common ratio 2 is 2	255, the value of <i>n</i> is		
(a) 8	(b) 5	(c) 3	(d) None		
133. How many terms of the C	G.P. 1, 4, 16 are to be ta	aken to have their su	m 341?		
(a) 8	(b) 5	(c) 3	(d) None		
134. The sum of n terms of the	series 5 + 55 + 555 +	is			
(a) (50/81) (10 ⁿ -1)-(5/9)r	1	(b) $(50/81) (10^{n}+1)$)-(5/9)n		
(c) $(50/81) (10^{n}+1)+(5/9)$	n	(d) None			
135. The sum of n terms of the	series 0.5 + 0.55 + 0.555 -	+ is			
(a) $(5/9)n-(5/81)(1-10^{-n})$		(b) (5/9)n+(5/81)(1-10 ⁻ⁿ)		
(c) $(5/9)n+(5/81)(1+10^{-n})$)	(d) None			
136. The sum of n terms of the	series 1.03+1.03 ² +1.03 ³	+ is			
(a) $(103/3)(1.03^{n}-1)$	(b) $(103/3)(1.03^n + 1)$	(c) $(103/3)(1.03^{n+1})$	-1) (d) None		
137. The sum upto infinity of	the series $1/2 + 1/6 + 1/1$	l8 + is			
(a) 3/4	(b) 1/4	(c) 1/2	(d) None		
138. The sum upto infinity of	the series 4 + 0.8 + 0.16 +	is			
(a) 5	(b) 10	(c) 8	(d) None		
139. The sum upto infinity of	the series $\sqrt{2} + 1/\sqrt{2} + 1/(2)$	$2\sqrt{2}$)+ is			
(a) $2\sqrt{2}$	(b) 2	(c) 4	(d) None		
140. The sum upto infinity of	the series $2/3 + 5/9 + 2/2$	27 + 5/81 + is			
(a) 11/8	(b) 8/11	(c) 3/11	(d) None		

141. The sum upto infinity of the series $(\sqrt{2}+1)+1+(\sqrt{2}-1)+\dots$ is						
(a) $(1/2)(4+3\sqrt{2})$	(b) (1/2)(4-3√2)	(c) $4+3\sqrt{2}$	(d) None			
142. The sum upto infinity o	f the series $(1+2^{-2})+(2^{-1}+2^{-2})$	4)+(2 ⁻² +2 ⁻⁶)+ is	S			
(a) 7/3	(b) 3/7	(c) 4/7	(d) None			
143. The sum upto infinity o	f the series $4/7-5/7^2+4/7^3$.	-5/7 ⁴ + is				
(a) 23/48	(b) 25/48	(c) 1/2	(d) None			
144. If the sum of infinite ter	ms in a G.P. is 2 and the s	um of their squares i	s 4/3 the series is			
(a) 1, 1/2, 1/4	(b) 1, -1/2, 1/4	(c) -1, -1/2, -1/4	(d) None			
145. The infinite G.P. with fi	rst term $1/4$ and sum $1/3$	is				
(a) 1/4, 1/16, 1/64	(b) 1/4, -1/16, 1/64 .	(C) 1/4, 1/8, 1/16	(d) None			
146. If the first term of a G.P. is	exceeds the second term b	y 2 and the sum to in	finity is 50 the series			
(a) 10, 8, 32/5	(b) 10, 8, 5/2	(c) 10, 10/3, 10/9	(d) None			
147. Three numbers in G.P. v	vith their sum 130 and the	ir product 27,000 are	2			
(a) 10, 30, 90	(b) 90, 30, 10	(c) both	(d) None			
148. Three numbers in G.P. v	vith their sum 13/3 and su	um of their squares 9	1/9 are			
148. Three numbers in G.P. v (a) 1/3, 1, 3	vith their sum 13/3 and su (b) 3, 1, 1/3	um of their squares 9 (c) both	1/9 are (d) None			
	(b) 3, 1, 1/3	(c) both	(d) None			
(a) 1/3, 1, 3 149. Find five numbers in G.I	(b) 3, 1, 1/3	(c) both 532 and the product of	(d) None			
(a) 1/3, 1, 3 149. Find five numbers in G.I	(b) 3, 1, 1/3 P. such that their product is (b) 18, 6, 2, 2/3, 2/9 t of three numbers in G.P	(c) both 5 32 and the product of (c) both	(d) None of the last two is 108. (d) None			
 (a) 1/3, 1, 3 149. Find five numbers in G.I (a) 2/9, 2/3, 2, 6, 18 150. If the continued produce 	(b) 3, 1, 1/3 P. such that their product is (b) 18, 6, 2, 2/3, 2/9 t of three numbers in G.P	(c) both 5 32 and the product of (c) both	(d) None of the last two is 108. (d) None			
 (a) 1/3, 1, 3 149. Find five numbers in G.I (a) 2/9, 2/3, 2, 6, 18 150. If the continued produce pairs is 39 the numbers is 39 the numbers. 	 (b) 3, 1, 1/3 P. such that their product is (b) 18, 6, 2, 2/3, 2/9 t of three numbers in G.Pare (b) 9, 3, 1 	(c) both s 32 and the product of (c) both P. is 27 and the sum (c) both	(d) None of the last two is 108. (d) None of their products in (d) None			

ANSWERS

1.	(c)	31.	(a)	61.	(a)	91.	(a)	121.	(a)
2.	(a)	32.	(a)	62.	(a)	92.	(a)	122.	(a)
3.	(b)	33.	(a)	63.	(a)	93.	(a)	123.	(a)
4.	(a)	34.	(b)	64.	(a)	94.	(c)	124.	(a)
5.	(a)	35.	(b)	65.	(a)	95.	(c)	125.	(a)
6.	(b)	36.	(a)	66.	(a)	96.	(b)	126.	(a)
7.	(c)	37.	(b)	67.	(a)	97.	(b)	127.	(a)
8.	(c)	38.	(c)	68.	(d)	98.	(b)	128.	(c)
9.	(a)	39.	(d)	69.	(a)	99.	(a)	129.	(a)
10.	(a)	40.	(d)	70.	(a)	100.	(a)	130.	(c)
11.	(b)	41.	(a)	71.	(a)	101.	(b)	131.	(a)
12.	(c)	42.	(a)	72.	(a)	102.	(a)	132.	(a)
13.	(a)	43.	(d)	73.	(a)	103.	(a)	133.	(b)
14.	(c)	44.	(d)	74.	(a)	104.	(a)	134.	(a)
15.	(b)	45.	(c)	75.	(a)	105.	(c)	135.	(a)
16.	(a)	46.	(a)	76.	(a)	106.	(c)	136.	(a)
17.	(a)	47.	(b)	77.	(b)	107.	(a)	137.	(a)
18.	(a)	48.	(c)	78.	(a)	108.	(a)	138.	(a)
19.	(a)	49.	(a)	79.	(a)	109.	(a)	139.	(a)
20.	(c)	50.	(b)	80.	(a)	110.	(b)	140.	(a)
21.	(b)	51.	(a)	81.	(a)	111.	(b)	141.	(a)
22.	(a)	52.	(d)	82.	(a)	112.	(c)	142.	(a)
23.	(a)	53.	(b)	83.	(a)	113.	(a)	143.	(a)
24.	(a)	54.	(b)	84.	(a)	114.	(a)	144.	(a)
25.	(c)	55.	(a)	85.	(a)	115.	(a)	145.	(a)
26.	(a)	56.	(a)	86.	(a)	116.	(b)	146.	(a)
27.	(c)	57.	(d)	87.	(a)	117.	(a)	147.	(c)
28.	(c)	58.	(a)	88.	(b)	118.	(a)	148.	(c)
29.	(a)	59)	(a)	89.	(c)	119.	(a)	149.	(a)
30.	(c)	60.	(a)	90.	(d)	120.	(a)	150.	(c)
151.	(a)								